http://ajasra.in/

(Peer Reviewed Refereed UGC CARE Group 1 International Journal)

Perspective on Big Data Hadoop Tools and Technologies

¹Shital P. Adkine, ²Dr. Manish T. Wanjari, ³Dr.Keshao D. Kalaskar

¹Dept.of Computer Science, Sardar Patel Mahavidyalaya, Chandrapur, Maharashtra-India ²Dept. of computer science, Shivaji Science College, Nagpur, Maharashtra-India ³Dept. of computer science, Dr, Ambedkar College, Chandrapur, Maharashtra-India

ABSTRACT

The word 'big data' itself tells everything is big like huge volume of data which can be in a structured, semi-structured, unstructured form. As it is Big so generated in a very large amount making it difficult to process using traditional techniques. To process these generated data traditional big data management system is incompetent to manage the large amount of data with different structures, thus Hadoop the framework which is designed to process the large data sets and provides high performance and fault tolerance from a single server to thousands of machines with different. In this paper we describe a study of big data, Hadoop along with a comparison of various tools and technologies used in big data management.

Keywords-component, Privacy, Unstructured Big Data, Big Data Classification, Big Data Tools

1. Introduction

Big data the term itself indicating its meaning a massive pool of data. Now a day's valuable asset means data. The usage of big data spread due to commercialization and digitization in each area. Mainly big data lies on 6 pillars of v's, volume variety, velocity, veracity, value and variability.

1.1. Big data is characterized with the help of Six Vs

- 1. Volume: Volume describes as a large quantity of data produced by every day in sets, tables and files by any organization like healthcare, education institutes & commercial business in terms of petabytes & zettabytes.
- 2. Variety: It refers to types of data which deals with may be structured or unstructured, semi-structured.
- 3. Velocity: It refers to the rate of growth; the speed of big data is generated Telecommunication produces 35TB of data on per day.
- 4. Veracity: Veracity defines availability and accountability biases, noise and anomaly in data.
- 5. Value: Having endless amounts of data but it can be move into value.
- 6. Variability: Variability deals with the data whose meaning is constantly changing

1.2. Sources of Big Data:

Big data are coming from several different sources. The three main primary sources of big data which includes the organization in

- 1. Social networks.
- 2. Traditional business system.
- 3. Internet of Things (IoT).

The data from these sources can be structured, semi-structured, or unstructured, or any combination of these varieties. Social Networks includes the data, human-sourced information from LinkedIn whatsup Twitter and Facebook,

Vol. 13, Issue No. 2, Feb 2024

Ajasra

UGC CARE GROUP 1

http://ajasra.in/

(Peer Reviewed Refereed UGC CARE Group 1 International Journal)

Instagram, Flickr, Pinterest, etc. Traditional Business Systems deals with customersservices likeCommercial transactions, E-commerce like Alibaba, Amazon, Flipkart generates huge amount of logs from which users buying trends, Banking records, Credit cards, healthcare records and Internet of Things include Sensors, traffic, weather, mobile phone location, etc. Security, surveillance videos, and images Satellite images, Data from computer systems (logs, weblogs, etc.) The connectivity of large number of heterogeneous devices produces huge data [3], which includes features such as heterogeneity, variety, unstructured feature, noise, and high redundancy.

1.3 Behavioral types of big data

Different types of big data based on content format are as follows:

Structured Data

The data stored in relational databases table in the format of row and column. Structured data include numbers, text, and dates; in terms of database, it is called *strings*. Data have fixed structures and these structures used for organizations to creating a perfect model. Data model permission to store, process and operate on data. Analysis and storing of structured data is very easy. Because of high cost, limited storage space and techniques used for processing, causes RDBMS the only path to store and process the data effectively. Programming language called Structured Query Language (SQL) is used for managing this type of data.

Unstructured Data

Without any specific structure and due to this could not be stored in a row and column format is unstructured data. The data is contradictory to that of structured data. It cannot be stored in a databank. Volume of this data is growing extremely fast which is very tough to manage and analyze it completely. To analyze the unstructured data advanced technology knowledge is needed.

Semi-structured Data

Data which is in the form of structured data but it does not fit the data model is semi-structured data. It cannot be stored in the form of data table, but it canbe stored in some particular types of files which hold some specific marker or tags. These markers are distinguished by some specific rule and the data is enforced to be stored with a ranking. This form of data increased rapidly after the introduction of the World Wide Web where various form of data need medium for interchanging the information like XML and JSON.

1.4 Margins of Existing Systems

The existing systems have major restrictions preventing their use in applications. The limitations are:

- 1. Lack of integrity
- 2. Lack of availability and continuity of service
- 3. Lack of accuracy
- 4. Existing systems provide vertical scalability.
- 5. Inconsistency in data format
- 6. Risk of mismanagement

Big Data deals with modern tools and techniques, and to process this huge data set the previously work traditional data management system is not work properly to handle this enormous amount of data. Traditional relational databases are obsolete and cannot store and process the data generated from recent business applications [4]. Traditional

http://ajasra.in/

(Peer Reviewed Refereed UGC CARE Group 1 International Journal)

computational frameworks, system architectures and processing systems are designed to handle structured data [5]. One solution to this is Hadoop which work to solve the problems in existing big data management system, which is design to process effectively by providing scalability fault tolerance h and high performance

	Traditional data	Big data	Pros of big data	
Types of data	Structured data	Structured, Unstructured and semi-structured	develop variety	
Volume	Small amount of data. Range- Gigabyte - terabytes	Large amount of data. Range- <petabytes.< td=""><td>Cost reduces and help business intelligence</td></petabytes.<>	Cost reduces and help business intelligence	
Data schema	Fixed schema	Dynamic schema	Preserves the information in data.	
Data Relationship	Relationship with data is explored easily	Difficulty in relationship betweendata items.	-	
Scaling	More than one server for computing	Single server for computing	Cost effective	
Accuracy	Less accurate results	High accurate results	Confident results and reliable	

Table 1:Comparison of traditional and big data [1]

Why Hadoop?

The key features and ability to process enormous amount of data with effective storage, computation and analysis has been a great impulse to take a look into the structural design of the industry leading big data processing framework byApache, Hadoop. Earlier days due to the less advanced technology to deals with unstructured data is not handling by several industries. Hadoop is a solution for big data, change the way and decision-making process be used for unstructured data. Hadoop provides a reliable and scalable platform which is used to solve problems caused by massive amount of heterogeneous data. Hadoop technology accepted because of the features like flexibility, scalability, performance, and cost effective. The Hadoop consists of Hadoop kernel, MapReduce, Hadoop distributed file system (HDFS) and Apache hive etc. MapReduce is a programming model which is used to processing large datasets and analyzing it in a cost-effective manner based on divide and conquers method. The divide and conquer method are implemented by two steps such as Map step and Reduce Step. Hadoop data analytics environment deals with data storage, data processing, data access, data management, privacy data protection.

Hadoop distributed file system (HDFS) for the analysis of massive type of data sets using theMapReduce programming model. Hadoop work on three master points scalability, computation capacity, and storage. Hadoopstores file system metadata known as blocks. It contains the name node and data nodes. HDFS work on master-slave architecture. An HDFS cluster contains a single name node, a master server that manages the file system namespace and directories in the form of hierarchy structure. Data node divides in totwo files, the first one contains data itself and the second deals with block's generation stamp. Hadoop Distributed File System is designed to tackle fault tolerant and effective-cost hardware. HDFSHadoop stands for "YET ANOTHER RESOURCE NEGOTIATOR". It provides different processing techniques, like batchprocessing, interactive processing, stream processing graph processingetc. Hadoop common contains libraries and directories.

<u>http://ajasra.in/</u>

(Peer Reviewed Refereed UGC CARE Group 1 International Journal)

Features	Hadoop	MapReduce	HBase	Hive	Spark	Pig
Data	Hadoop is a	MapReduce is bas	HBase is run	Data flow in	Spark	The Pig is used
flow	chain of	on distributed	on top of	Hive behaves	represents a	to analyze larger
	stages.	programming moc	HDFS and it	at the query	data flow in	sets of data that
		that was designed	stores data in	execution	a form of a	presents them as
		for processing of	the key / value	level right	direct	data flows
		huge volumes of	form.	from the UI.	acyclic	
		datasets in paralle		Meta store	graph	
		such that it is		sends	(DAG).	
		independently wo		metadata info		
		without bothering		back to the		
		sub work.		compiler.		
Data	Hadoop uses	MapReduce is a tool	HBase is used	Hive is used	Spark is	Pig is a tool used
processing	batch	which is suitable for	to store data	to	micro-batch	for analyzing of
1 0	processing	parallel processing	into a column-	summarizatio	processing	huge data sets.
	system.	of huge data.	oriented	n of data,	and system	
	-)		database	query, and		
			format.	analysis.		
Streaming	Hadoop deals	MapReducestreamin	The batch load	Hive		Pig provides a
engine	with large	g is a type of native	is optimized to	streaming	Spark	parallel
engine	data sets as	batch processing	run on the	provides for	streams	architecture-
	input,	engine.	Spark	Software	data in to	oriented
	processes it	engine.	execution	based	micro-	streaming engine
	and produces		engine	enterprise	batches.	that can update
	the output.		engine	content	batefies.	Hadoop data
	the output.			delivery that		over small
				is done		portions.
				behind the		portions.
				firewall for		
				efficiency and		
				security.		
Scalability	Hadoon	MapReduce	HBase	Hive is much	Spark	Pig provides
Scalability	Hadoop provides	provides scalability	provides	familiar, fast,	provides	high level
	scalable,	means that single	extreme	scalable and	linear	scalability
	flexible data	server to thousands	scalability,	extensible.	scalability	scalability
	storage and	of different	-	extensiole.	in the	
	U	machines	reliability, and flexibility for		distributed	
	analysis.	machines	data.		environmen	
			uala.			
Latonar	Hadoon airea	Man Paduga ciwas	HBase is fast	Uivo has high	t Spork gives	Dig is straamin-
Latency	Hadoop gives	MapReduce gives low latency.	and used for	Hive has high	Spark gives	Pig is streaming
	higher latency	low latency.		Latency as	low latency	writes, just like
	than both		low latency	compared to	than	Map Reduce.
	Spark and		data access. It	HBase.	Hadoop	Low latency
	Fink.		stores data in -			queries are not
			memory table			supported in

Table 2 – List of latest tools available to handle big data [2]

Ajasra

UGC CARE GROUP 1

http://ajasra.in/ (Peer Reviewed Refereed UGC CARE Group 1 International Journal)

			known as			Pig;thus it is not
			MemStore.			suitable for
						OLAP and
						OLTP.
Scheduler	Hadoop	MapReduce	HBase	Hive	Spark deals	Oozie is the tool
	provides two	provides the Fair	Scheduler uses	schedules	With its own	for workflow
	types of	Scheduler, which	a polling to	table every	flow	scheduler in
	schedulers.	provides a way to	change state at	hour by use	scheduler	Hadoop for
	fair scheduler	share large clusters.	controlintervals	of Oozie	due to in-	Apache Pig –
	and Capacity		. if required	schedule.	memory	Secondly, writes
	scheduler in		based on		computation.	a brief Pig script
	Hadoop. The		configuration it			for each data file
	scheduler in		can trigger			to extract the
	Hadoop		jobs.			required data
	becomes the					fields.
	pluggable					
	component.					
Cost	A mid-range	Map reduce Cost is	The cost of	Hive is also	Spark is	Pig is lower in
	Intel server is	high but Hadoop	HBaseis	open source,	very costly	cost to write and
	recommended	cluster, a mid-range	depends on	and built on		maintain
	an enterprise-	Intel server is	your usage	top of		compared to
	class Hadoop	recommended for it.	pattern; S3	Hadoop for		MapReduce
	cluster.		listing and file	data querying.		
			transfer might			
			cost money.			
Developme	Hadoop is	MapReduce is	HBaseis an	Hive was	. Spark is	. Pig is
nt	developed by	developed by	open-source	initially	developed	originally
	Apache	Google for a new	project that was	developed by	in the	developed by
	Software	style of large data	incubated by	Facebook, but	University	Yahoo &
	Foundation.	processing	Apache	also some	of	Facebook
			Software	other	California	
			Foundation.	companies	after some	
				develop and	time it's	
				use it.	codebase	
					donated to	
					Apache	
					Software	
					Foundation	

5. Conclusion

In this paper we concentratedon Big Data &Hadoop along with six V's and big data tools. Traditional big data management systems not up to the mark to handle massive data sets. Many issues arise while handling the big data due to some sort of lack of accuracy, lack of integrity, lack of privacy, etc. Some major issues have to come with the traditional big data management system. To overcome these types of issues Hadoop is the solution for the processing of large data sets very effective manner. It is a future technology which provides excellent scalability as from a single server to thousands of machines according to our requirements. We have discussed a big data tool to handle

Ajasra

UGC CARE GROUP 1

http://ajasra.in/

(Peer Reviewed Refereed UGC CARE Group 1 International Journal)

heterogeneous data. This review is conducted to give academics an appropriate guideline in determining the promising region regarding the Hadoop. Hadoop is indeed a technology to store and process the huge data sets. Major concern that is associated with big data is ensuring its security and integrity. Apache Spark is another tool used in analytics of big data. It is faster performance than Map Reduce. There are almost all tools covered which deals with big data.

References

- [1]. Chunarkar-Patil P, Bhosale A. Big data analytics. Open Access J Sci. 2018;2(5):326–335. DOI: 10.15406/oajs.2018.02.00095
- [2]. Toshifa, Aniruddh Sanga, Shweta Mongia, International Conference on Advancements in Computing & Management (ICACM-2019)
- [3]. P. R. B. B, P. Saluja, N. Sharma, A. Mittal, and S. V. Sharma, "Cloud Computing for Internet of Things & Sensing Based Applications," Sensing Technology (ICST), pp. 374–380, 2012.
- [4]. M. Junghanns, M. Neumann, and E. Rahm, "Management and Analysis of Big Graph Data: Current Systems and Open Challenges," in Handbook of Big Data Technologies, 2017, pp. 457–505.
- [5]. S. Akter and S. F. Wamba, "Big data analytics in E-commerce: a systematic review and agenda for future research," Electronic Markets, pp. 173–194, 2016.
- [6]. S. Srivastava, "Appraising a Decade of Research in the Field of Big Data 'The Next Big Thing,'" Computing for Sustainable Global Development (INDIACom), no. 2014, pp. 2171–2175, 2016.
- [7]. J. Quackenbush, "Microarray data normalization and transformation," Nature Genetics, vol. 32, no. December, pp. 496–501, 2002.
- [8]. J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters," Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.
- [9]. R. Casado and M. Younas, "Emerging trends and technologies in big data processing," 2014.
- [10]. S. Venkatraman, S. Kaspi, Kiran Fahd, and R. Venkatraman, "SQL Versus NoSQL Movement with Big Data Analytics," International Journal of Information Technology and Computer Science, vol. 8, no. 12, pp. 59–66, 2016.
- [11]. D. J. Abadi, P. A. Boncz, and S. Haritopoulos, "Column-oriented Database Systems," Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1664–1665, 2009.
- [12]. F. Naumann, "Data Profiling Revisited," vol. 42, no. 4, 2013.
- [13]. M. Seeger, "Key-Value stores: a practical overview," pp. 1–21, 2009.
- [14]. B. Baesens, R. Bapna, J. R. Marsden, J. Vanthienen, and J. L. Zhao, "Transformational issues of big data and analytics in networked business," MIS quarterly, vol. 38, no. 2, pp. 629–631, 2014.
- [15]. S. Amini and C. Prehofer, "Big Data Analytics Architecture for Real- Time Traffic Control," Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2017.
- [16]. S. Yu, "Big Privacy: Challenges and Opportunities of Privacy Study in the Age of Big Data," IEEE Access, vol. 4, pp. 2751–2763, 2016.

Vol. 13, Issue No. 2, Feb 2024

http://ajasra.in/

(Peer Reviewed Refereed UGC CARE Group 1 International Journal)

- [17]. B. Zhou and J. Pei, "The k-anonymity and l-diversity approaches for privacy preservation in social networks against neighborhood attacks," Knowledge and Information Systems, vol. 28, no. 1, pp. 47–77, 2011.
- [18]. A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkatasubramanian, "L-diversity: Privacy beyond kanonymity," ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1, 3–es, 2007.
- [19]. N. Li, T. Li, and S. Venkatasubramanian, "T-closeness: Privacy beyond k-anonymity and l-diversity," in2007 IEEE 23rd International Conference on Data Engineering, IEEE, 2007, pp. 106–115.